42 research outputs found

    Dielectric mixtures -- electrical properties and modeling

    Full text link
    In this paper, a review on dielectric mixtures and the importance of the numerical simulations of dielectric mixtures are presented. It stresses on the interfacial polarization observed in mixtures. It is shown that this polarization can yield different dielectric responses depending on the properties of the constituents and their concentrations. Open question on the subject are also introduced.Comment: 40 pages 12 figures, to be appear in IEEE Trans. on Dielectric

    Highly structured graphene polyethylene nanocomposites

    Get PDF
    This research presents an overview of the properties of highly structured, low density polyethylene-graphene nanoplatelets (LDPE-GnP). The influence of nanofiller content, size and processing conditions on the material properties have been investigated. Therefore, rheological and thermal nanocomposite properties were investigated. So-called dry-coating method has been used in order to prepare masterbatches which were thereafter extruded by means of single screw extruder resulting in a strong anisotropy in the extruded samples. Graphene nanoplatelets were oriented in the extrusion direction for all shear rates and flow histories investigated, as confirmed by scanning electron microscopy. The rheological percolation was determined via nonlinear parameters to be around 11wt%. Thermal conductivity measurements revealed strong anisotropy with in-plane conductivity increasing with GnP content

    Ageing of Silicone Rubber Insulators in Coastal and Inland Tropical Environment

    No full text
    This paper presents investigations on the performance of 33 kV silicone rubber insulators characterized by different creepage lengths, which aimed to find out whether the insulators could permanently work when electrically stressed beyond the recommended limits in polluted and clean tropical environments. The study was performed under natural field and laboratory conditions. The insulators tested included eight types of silicone rubber composite insulators, one type of hybrid silicone-ceramic insulator and one semi-conducting glazed porcelain insulator, while ordinary porcelain and glass insulators were used as reference. During the field investigation, two sets of the insulators were separately installed and energized in coastal and inland parts of Sri Lanka, being by that exposed to marine and clean tropical environments. Their performances were periodically evaluated by visual inspections and measurements of hydrophobicity class. After five years of field exposure, the insulator performances were evaluated in laboratory by measurements of leakage currents under clean fog conditions and of wet flashover voltage. A third set of the insulators was aged in laboratory for 1000 hours inside a salt fog chamber where the insulators were continuously energized and daily sprayed with salt solution for eight hours and left to rest for remaining 16 hours. This treatment represented conditions similar as those in the field i.e. insulators exposed to salt sprays during monsoons. The insulator performances were investigated by measurements of leakage currents and classifying their patterns into different categories, i.e. capacitive, resistive, non-linear, discharge and strong discharge types, by means of fast Fourier transform and short time Fourier transform analyses. It was found that the long-term field exposure yielded weaker insulator deterioration than the salt fog chamber ageing, which indicated for a possibility to increase the electric stress on silicone rubber insulators to levels higher than the ones used today on glass and porcelain counterparts

    Ageing of Silicone Rubber Insulators in Coastal and Inland Tropical Environment

    No full text
    This paper presents investigations on the performance of 33 kV silicone rubber insulators characterized by different creepage lengths, which aimed to find out whether the insulators could permanently work when electrically stressed beyond the recommended limits in polluted and clean tropical environments. The study was performed under natural field and laboratory conditions. The insulators tested included eight types of silicone rubber composite insulators, one type of hybrid silicone-ceramic insulator and one semi-conducting glazed porcelain insulator, while ordinary porcelain and glass insulators were used as reference. During the field investigation, two sets of the insulators were separately installed and energized in coastal and inland parts of Sri Lanka, being by that exposed to marine and clean tropical environments. Their performances were periodically evaluated by visual inspections and measurements of hydrophobicity class. After five years of field exposure, the insulator performances were evaluated in laboratory by measurements of leakage currents under clean fog conditions and of wet flashover voltage. A third set of the insulators was aged in laboratory for 1000 hours inside a salt fog chamber where the insulators were continuously energized and daily sprayed with salt solution for eight hours and left to rest for remaining 16 hours. This treatment represented conditions similar as those in the field i.e. insulators exposed to salt sprays during monsoons. The insulator performances were investigated by measurements of leakage currents and classifying their patterns into different categories, i.e. capacitive, resistive, non-linear, discharge and strong discharge types, by means of fast Fourier transform and short time Fourier transform analyses. It was found that the long-term field exposure yielded weaker insulator deterioration than the salt fog chamber ageing, which indicated for a possibility to increase the electric stress on silicone rubber insulators to levels higher than the ones used today on glass and porcelain counterparts
    corecore